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We present an implementation of the hybridization expansion impurity solver which employs sparse-matrix
exact-diagonalization techniques to compute the time evolution of the local Hamiltonian. This method avoids
computationally expensive matrix-matrix multiplications and becomes advantageous over the conventional
implementation for models with five or more orbitals. In particular, this method will allow the systematic
investigation of 7-orbital systems �lanthanide and actinide compounds� within single-site dynamical mean-field
theory. We illustrate the power and usefulness of our approach with dynamical mean-field results for a 5-orbital
model which captures some aspects of the physics of the iron-based superconductors.
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I. INTRODUCTION

The development of efficient numerical methods to solve
quantum impurity problems is an active research area. De-
mand for powerful and flexible impurity solvers is driven by
the success of dynamical mean-field theory �DMFT�, which
approximates Fermionic lattice problems by self-consistent
solutions of appropriately defined quantum impurity
models.1 While impurity models are computationally more
tractable than lattice models, the desire to include spatial
correlations via cluster extensions2–4 or to treat complicated
interaction terms in realistic descriptions of multiorbital sys-
tems results in considerable computational challenges.

The multisite or multiorbital nature of the most relevant
impurity models favors Monte Carlo methods. In this area,
considerable progress has been achieved with the recent de-
velopment of continuous-time or diagrammatic Monte Carlo
techniques �CTQMC�. The CTQMC algorithms come in two
flavors. Weak coupling solvers5–7 are based on an expansion
of the partition function in powers of the interaction terms.
This is the method of choice for large cluster calculations of
relatively simple models �such as the one-band Hubbard
model� because the computational effort scales as the cube of
the system size. The complementary approach is based on an
expansion of the partition function in the impurity-bath
hybridization.8 This so-called hybridization expansion tech-
nique treats the local interactions exactly and can be applied
to a wide range of models, including the t-J and Kondo-
lattice model.9,10 However, since the Hilbert space of the
local problem grows exponentially with the number of sites
or orbitals, the computational effort scales exponentially,
rather than cubically with system size. Nevertheless, the flex-
ibility of the hybridization expansion method and the infor-
mation it can provide about the relevant states of the atomic
system make it a desirable tool in particular for the DMFT
study of transition-metal oxides and actinide compounds.
Here, we present an implementation of this method which
enables the reliable simulation of models with up to seven
orbitals on present-day computer clusters with O�100� pro-
cessors.

The rest of this paper is organized as follows: Sec. II
provides a brief review of the hybridization expansion tech-

nique in the matrix formulation of Refs. 9 and 10 and Sec. III
discusses the new Krylov-based implementation. We demon-
strate the accuracy and efficiency of the Krylov approach in
Sec. IV, and use it in Sec. V to compute phase diagrams for
a “toy model” of the pnictides �a 5-orbital model with almost
degenerate bands and relatively large Hund coupling term�.
Section VI is a conclusion and outlook.

II. HYBRIDIZATION EXPANSION IN THE GENERAL
MATRIX FORMULATION

A quantum impurity model describes an atom or molecule
embedded in some host material with which it can exchange
electrons. The corresponding Hamiltonian H=Hloc+Hmix
+Hbath contains three terms: Hloc=��,���,���

†��

+��,�,�,�U�,�,�,���
†��

†���� describes the impurity �chemical
potential, interaction, and intersite/orbital hopping terms�,
Hbath=��,p�p

�ap,�
† ap,� a bath of noninteracting electrons

whose parameters are fixed by the DMFT self-consistency1

and the hybridization term Hmix=��,��,p�Vp
�,����

†ap,��+H.c.�
controls the exchange of electrons between the impurity and
the bath. Diagrammatic Monte Carlo simulation relies on an
expansion of the partition function Z=Tr�e−�H� into a series
of diagrams and the stochastic sampling of collections of
these diagrams. For the hybridization expansion,8–10 we split
the Hamiltonian into two parts, H1=Hloc+Hbath and H2
=Hmix, and employ an interaction representation in which the
time evolution of operators is given by H1: O���
=e�H1Oe−�H1. In this interaction representation, the partition
function can be expressed as a time-ordered exponential,
which is then expanded into powers of H2

Z = Tr�e−�H1Te−�0
�d�H2���� = �

n=0

	 �
0

�

d�1 . . . �
�n−1

�

d�n


Tr�e−��−�n�H1�− H2� . . . e−��2−�1�H1�− H2�e−�1H1� . �1�

Equation �1� represents the partition function as a sum
over all configurations c= ��1� ¯ ��n	, n=0,1 , . . ., �i
� �0,�� with weight wc=Tr�e−��−�n�H1�−H2�
. . .e−��2−�1�H1�−H2�e−�1H1�d�n. After the expansion, the time
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evolution �given by H1� no longer couples the impurity and
the bath. It therefore becomes possible to integrate out the
bath degrees of freedom analytically to obtain

wc̃ = Zbath Trloc�e−�HlocT��n
��n���n�

† ��n�� . . . ��1
��1���1�

† ��1���


 det M−1���1,�1	, . . . ,��n,�n	;��1�,�1�	, . . . ,��n�,�n�	�


�d��2n. �2�

The configurations c̃ are now collections of n time arguments
�1� ¯ ��n corresponding to annihilation operators with fla-
vor indices �1 , . . . ,�n and n time arguments �1�� ¯ ��n�
corresponding to creation operators with flavor indices
�1� , . . . ,�n�. The element i , j of the matrix M−1 is given by
the hybridization function F�i�,�j

��i�−� j�, which is defined in

terms of the hybridization parameters Vp
�,�� and the bath en-

ergy levels �p
�.9 Given the weights wc̃, a stochastic sampling

of all relevant configurations c̃ can be implemented using
local updates such as the random insertion or removal of
pairs of creation and annihilation operators.

For the present purpose, the important thing to note is that
up to the irrelevant constant Zbath the weights consist of two
factors: Trloc� . . . � evaluates the imaginary-time evolution of
the quantum impurity for a given sequence of hybridization
events while det M−1 gives the contribution of the bath de-
grees of freedom which have been integrated out. Using fast
matrix updates, the determinant ratios for local updates can
be computed in a time O�n2�. The exponential scaling of the
algorithm is due to the trace factor. With the exception of
single-site multiorbital systems with density-density interac-
tions �for which the occupation number basis is an eigenbasis
of Hloc and thus the very efficient segment formulation8 can
be used�, the exponential growth of dim�Hloc� with number
of sites or orbitals means that the simulation of large systems
becomes computationally expensive.

The strategy proposed in Ref. 9 was to evaluate the trace
in the eigenbasis of the local Hamiltonian. In this basis, the
time evolution operators e−�Hloc become diagonal and can be
computed easily. On the other hand, the operators � and �†,
which are sparse and simple in the occupation number basis,
become complicated matrices in the eigenbasis of Hloc. To
facilitate the task of multiplying these operator matrices it is
important to order the eigenstates according to conserved
quantum numbers as explained in Ref. 10. The evaluation of
the trace is then reduced to block matrix multiplications of
the form

�
contr.m

Trm�. . .�O�m�,m��e
−���−��Hloc�m��O�m�,m�e−�Hloc�m� ,

�3�

where O is either a creation or annihilation operator, m de-
notes the index of the matrix block, and the sum runs over
those sectors which are compatible with the operator se-
quence. With this technique, 3-orbital models or four-site
clusters can be simulated efficiently.11–15 However, since the
matrix blocks are dense and the largest blocks grow expo-
nentially with system size, the simulation of 5-orbital models
becomes already quite expensive and the simulation of

7-orbital models with five, six, or seven electrons is only
doable if the size of the blocks is severely truncated.

In fact, one should distinguish two types of truncations:
�i� the truncation of the outer trace ��contr.m� to those
quantum-number sectors or states which give the dominant
contribution and �ii� the reduction in the size of the operator
blocks �O�m�,m� via elimination of high-energy states.

The truncation of type �i� is harmless at low enough tem-
perature because it restricts the possible states at only a
single point on the imaginary-time interval. On the other
hand, truncations of the type �ii�, if not done properly, can
lead to systematic errors, whose effect will be hard to esti-
mate in large systems, because the truncations are necessar-
ily severe.

III. KRYLOV-SPACE METHOD

As an alternative strategy to evaluate the trace factor in
Eq. �2� we propose to �1� adopt the occupation number basis,
in which the �-operator matrices can easily be applied to any
given state and in which the sparse nature of Hloc can be
exploited during the imaginary time evolution by relying on
efficient Krylov-space methods and �2� to approximate the
outer trace by a sum over the lowest energy states �i.e., trun-
cation type �i� introduced above�.

This implementation involves only matrix-vector multi-
plications of the type ��†�
v� and Hloc
v� with sparse opera-
tors ��†� and Hloc, and is thus doable in principle even for
systems for which the multiplication of dense matrix blocks
becomes prohibitively expensive or for which the matrix
blocks will not even fit into the memory anymore. Further-
more, no approximation of type �ii� is required so that all
excited states remain accessible at intermediate � in the trace.
The sparse nature of the hybridization operators is evident
given the fact that these are �combinations of� creation and
annihilation operators in the occupation number basis. Hloc is
sparse because the number of interaction terms is propor-
tional to a small integer power of the number of orbitals
while the dimension of the matrix grows exponentially with
the number of orbitals.

Our implementation is based on very efficient sparse-
matrix algorithms for the evaluation of matrix exponentials
applied to a vector, i.e., exp�−�Hloc�
v�.16–18 These algo-
rithms construct the Krylov space Kp�
v��
=span�
v� ,Hloc
v� ,Hloc

2 
v� , . . . ,Hloc
p 
v�	 and then approximate

the full matrix exponential by the matrix exponential of the
Hamiltonian projected onto the Krylov space Kp�
v��. In Ref.
17 it has been shown rigorously that these Krylov-space al-
gorithms converge rapidly as a function of p, typically reach-
ing convergence for very small iteration numbers p�Ndim,
although the number of iterations depends on the time inter-
val �.

Let us describe the algorithm for the trace evaluation in
some more detail. First, during the initialization part of the
simulation, the following steps are required: �1� obtain the
low-energy spectrum and eigenfunctions of Hloc using
�Band-�Lanczos or Davidson techniques, or alternatively di-
agonalize Hloc completely using full diagonalization tech-
niques. The Band-Lanczos or Davidson techniques are
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needed to resolve the exact degeneracies of the eigenfunc-
tions. �2� Decide which eigenstates of the spectrum are to be
kept in the outer trace. It is important not to destroy the
multiplet structure of Hloc when truncating the trace. The
truncation criteria employed in our implementation are dis-
cussed in more detail in Sec. IV. Then, in the actual evalua-
tion of a trace, we proceed as follows: �3� propagate a re-
tained state in the trace up to the first hybridization event
�forward and backward in time�. Since the initial state is an
eigenstate of Hloc, this state is simply multiplied by an expo-
nential factor for the first interval. �4� Apply the hybridiza-
tion operator on the propagated state. �5� Propagate the cur-
rent state up to the next hybridization event using the
Krylov-space approach to the matrix exponential described
above. The state to be propagated is generically not an eigen-
state of Hloc anymore so the Krylov space must be con-
structed up to a certain dimension. The Krylov-space size
should not be kept fixed but should be determined for each
imaginary time interval according to a convergence criterion.
In the applications reported in the present paper the average
Krylov-space dimension is �2. �6� Go back to step 4 if more
hybridization operators are present. �7� Add the contribution
of the propagated state to the trace. �8� Go back to step 3
until all retained states have been considered in the trace.

In the truncated trace approach it is important to measure
the various local observables at �=� /2 in order to be least
affected by the truncation of the trace at �=0 �and equiva-
lently at �=��.

We conclude this section by illustrating the main advan-
tage of the Krylov-space method through a simple time com-
plexity analysis of the algorithm. Say we want to determine
the trace of a given sequence of the hybridization operators �
and �†. According to the truncation �i� introduced above we
perform the trace over NtrNdim states, where Ndim is the
typical size of the impurity Hilbert space, which grows ex-
ponentially with the number of sites or orbitals contained in
the “impurity.” Since there are Nhyb hybridization events, the
complexity of the application of the hybridization operators
is O�Nhyb
Ndim
Ntr�. The imaginary time evolution on the
other hand is nontrivial on Ninterval=Nhyb−1 intervals. Based
on Ref. 17, we assume a typical number of iterations Niters
�Ndim is needed to reach convergence for the imaginary
time evolution of a single state 
v� over an interval length �.
It follows that the complexity of the imaginary time-
evolution part is O�Ntr
Ninterval
Niter
Ndim� and the over-
all time complexity amounts to

O�Ndim 
 Ntr 
 �Nhyb + Ninterval 
 Niter�� .

In the worst case where we retain all states in the trace,
Ntr=Ndim, the complexity scales as Ndim

2 but in the best case
Ntr=O�1� the time complexity is linear in Ndim. In compari-
son the matrix formulation has a less favorable scaling with
Ndim. In the case where we keep all states in the trace the
time complexity is O�NintervalNdim

3 � because of the expensive
dense matrix-matrix multiplications whereas it is O�Ninterval

Ndim

2 
Ntr� for the truncated trace version.
While it is therefore obvious that in theory the Krylov-

space approach is the method of choice due to its superior
Ndim scaling, in practice the precise numbers of Ntr, Niter, and

Ndim will determine which one of the two formulations per-
forms better for a given problem with tractable Hilbert-space
size. In the following section we address the performance
and scaling of the two algorithmic formulations.

IV. EFFECT OF THE TRUNCATION AND EFFICIENCY

A. Accuracy of the Krylov approach

Before trying to determine the system size for which the
Krylov implementation outperforms the matrix method, we
demonstrate the accuracy of the new approach. We consider
multiorbital models with a local Hamiltonian of the form

Hloc = − �
a,�

�� + �a�na,� + �
a

Una,↑na,↓

+ �
a�b,�

�U�na,�nb,−� + �U� − J�na,�nb,��

− �
a�b

J��a,↓
† �b,↑

† �b,↓�a,↑ + �b,↑
† �b,↓

† �a,↑�a,↓ + H.c.�

�4�

and rotationally invariant interactions �U�=U−2J so the in-
terorbital interactions are U−2J for opposite spin and U
−3J for same spin�. Figure 1 compares the Green’s functions
for a 3-orbital model with Hund coupling parameter J
=U /6. The hybridization function is that of a noninteracting
model with semicircular density of states of bandwidth 4 eV
and the chemical potential has been chosen such that the
system is at half filling ��= 5

2U−5J�. The crystal-field split-
tings �a are zero. We give the parameters U, J, �, and � in
units of eV.

For three orbitals, both methods yield accurate results in a
few CPU hours. The top panel of Fig. 1 shows the measured
Green’s functions for U=6, J=U /6=1, and different values
of inverse temperature � while the bottom panel compares
the results for �=50 and different values of the interaction
strength. The open symbols �red online� were computed with
the matrix method without any truncations. These are thus
exact results �Monte Carlo errors are much smaller than the
symbol size� which may be used to test the accuracy of the
Krylov approach. The Krylov results are plotted by full sym-
bols �blue online�. These data were computed with only the
lowest energy states in the outer trace �four in this case since
the ground state of the half-filled model carries spin 3/2�,
which means that we use here the O�1� approximation for
Ntr. While deviations between the approximate and exact re-
sult are apparent at �=3.125, they become smaller as tem-
perature is lowered and for ��50 can be considered negli-
gible. The bottom panel shows that for �=50, essentially
perfect agreement between the two methods is found for all
relevant interaction strengths.

These results can readily be understood from the scaling
of the perturbation order with U and � in the hybridization
expansion method.8 The average perturbation order grows
roughly linearly with the length � of the imaginary time
interval and decreases as interaction strength is increased.
Since we restrict the system to the ground state at one point
of the imaginary time interval ��=0�, a larger number of
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hybridization events facilitates the relaxation into the true
equilibrium distribution �measurements are performed at
�=� /2�. More importantly, the lower the temperature, the
larger the overlap of this probability distribution with the
ground state, i.e., the probability of the system being in the
ground state at any given time becomes large. Thus, forcing
the system into the ground state at �=0 to compute the trace
more efficiently has no severe effects at low enough tem-
perature. Our data suggest that the truncation of Ntr to the
ground-state vectors is legitimate for temperatures which are
�1% of the bandwidth �4 eV� and we will use this O�1�
truncation in all subsequent Krylov calculations. We also
note that the truncation of the trace does not seem to induce
a sign problem for the multiorbital problems studied in the
present work.

B. Efficiency

To compare the efficiency of the two implementations we
plot in Fig. 2 the number of local updates per second for

multiorbital systems with n=2,3 , . . . orbitals. A local update
is either an insertion or a removal of a pair of � and �†

operators, and involves the calculation of Trloc. In our
n-orbital models �Eq. �4�� each orbital interacts with every
other through density-density, spin-exchange, and pair-
hopping terms. The intraorbital repulsion is U, the Hund cou-
pling parameter J=U /6, and the crystal-field splittings are
zero. We chose U=6 and �=50 in all the calculations, and
the hybridization function of the noninteracting model with
semicircular density of states of bandwidth 4. The half-filling
condition for these multiorbital systems is �half= �n− 1

2 �U
− �n−1� 5

2J. The blue lines with diamonds show the results
for the method based on matrix multiplications �matrix
method� without any truncation. For n�3, the evaluation of
the trace becomes the bottleneck of the simulation and we
observe an exponential decrease in the number of updates
per second. The red lines with triangles show the result for
the matrix code in which the trace is restricted to the sector
m containing the ground state �but without any truncation in
the size of the blocks�. The rather modest effect of the trun-
cation is due to the fact that at half filling the largest blocks
cannot be discarded.

The black lines with circles show the number of updates
obtained with the Krylov method. The curve still drops ex-
ponentially with increasing n but the slope is smaller than in
the matrix case as expected from the scaling argument in the
previous section. While the number of updates in the matrix
implementation drops by about 4 orders of magnitude as n is
increased from 3 to 5, it drops only 2 orders of magnitude in
the Krylov implementation. The more favorable scaling in
the Krylov case allows us to measure also n=6 and n=7 and
as seen in Fig. 2, the slope remains essentially unchanged.
The time per update increases by about 2 orders of magni-
tude from n=5 to n=7. Given that the Krylov code allows
the simulation of 5-orbital models �transition-metal com-
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FIG. 1. �Color online� Comparison between the Green’s func-
tions of a 3-orbital model computed with the matrix method �open
symbols, no truncation of the trace� and the Krylov method �full
symbols, truncation of the trace to the lowest energy states� for
different temperatures �top panel, U=6� and interaction strengths
�bottom panel, �=50�. The results become indistinguishable at tem-
peratures which are �1% of the bandwidth.
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FIG. 2. �Color online� Efficiency �number of updates per sec-
ond� of the different implementations as a function of system size.
The models are n-orbital impurity models with rotationally invari-
ant Hund coupling at half filling ��=�half�, U=6, J /U=1 /6, and
�=50. For the matrix method we show results without truncation
�diamonds� and with truncation of the trace to the quantum-number
sector containing the ground state �triangles�. In the Krylov calcu-
lation, the trace is truncated to the lowest energy states.
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pounds� on a small number of processors, we therefore ex-
pect that this method will enable the controlled and accurate
simulation of 7-orbital models �lanthanide and actinide com-
pounds� on larger clusters with a few hundred processors.

C. Effect of the ground-state degeneracy

The outer trace must at least contain all the ground-state
eigenvectors and the ground-state degeneracy of Hloc de-
pends on the model parameters. We therefore compare in
Fig. 3 the efficiency of the matrix and Krylov implementa-
tions for the 5-orbital model at different values of the chemi-
cal potential �chosen such that the ground state lies in the
ntot=5 ,6 , . . . ,10 electron sector�. The corresponding ground-
state degeneracies are 6, 25, 40, 30, 10, and 1. The increase
in Ntr from 6 to 25 leads to a slight decrease in the efficiency
of the Krylov method if � is increased from �half to �half
+6. For even larger �, the efficiency increases because the
relevant quantum sectors become smaller. This also explains
why the advantage of the Krylov implementation over the
matrix method decreases as one moves away from half fill-
ing.

If the Krylov trace is restricted to ground-state vectors,
level crossings in Hloc will typically lead to sudden changes
in the number and types of states considered in Trloc, even in
situations where the physical state of the system is not ex-
pected to change dramatically. However, as shown in Fig. 4,
this does not lead to inconsistencies if the temperature is
sufficiently low. The figure plots the probability distribution
of the different quantum-number sectors, ordered as
�n↑=0,n↓=0� , �n↑=1,n↓=0� , . . . , �n↑=4,n↓=5� , �n↑=5,n↓
=5� from left to right, for the 5-orbital model with U=6,
J=U /6, and �=�half+4.98 �red circles, Ntr=6�, �=�half+5
�blue diamonds, Ntr=31�, and �=�half+5.02 �black triangles,
Ntr=25� at �=50. All three trace calculations yield consistent
distributions and thus the same physical state. The �small�
inaccuracies near level crossings could be further reduced by

retaining all the states in a certain energy window above the
ground state.

V. APPLICATION

In this section we illustrate the usefulness and efficiency
of the Krylov method with DMFT results for 5-orbital mod-
els with semicircular density of states of bandwidth 4. We
will consider the situation in which all bands are degenerate
��a=0,a=1, . . . ,5� and a 2+3 eg-t2g crystal-field splitting of
magnitude 0.5, in which the doublet is shifted down
��1=�2=0.5,�3=�4=�5=0�. All the calculations are for
�=50 and require less than 50 CPU hours per iteration.

A. Orbitally degenerate case

Figure 5 shows the paramagnetic phase diagram in the
space of chemical potential �relative to �half=4.5U−10J� and
interaction strength. The top panel is the result for J /U
=1 /4 and the bottom panel for J /U=1 /6. We first discuss
the orbitally symmetric case which corresponds to the blue
lines with stars. The figure shows the Mott insulating lobes
with n=5 and 6 electrons. Additional lobes with n=7, . . . ,9
and a band-insulating solution with n=10 also exist but are
not shown �computations near half filling are the most chal-
lenging ones because they involve quantum-number sectors
with high dimension�. The Hund coupling J is seen to stabi-
lize the half-filled n=5 Mott lobe while pushing the critical
interaction for the n=6 Mott lobe to larger values. The dif-
ferent widths of these lobes and their J dependence can be
understood from the � dependence of the eigenstates of Hloc
as explained in the context of a 3-orbital calculation in Ref.
12. A comparison of the 5-orbital result for J /U=1 /6 to the
lower panel of Fig. 2 in Ref. 12 and the 2-orbital calculations
�Fig. 2� in Ref. 19 furthermore shows the evolution of Uc
with increasing number of orbitals: in the 2-orbital model
Uc

half filled�3.7, in the 3-orbital model Uc
half filled�3 and

Uc
half filled+1�11, and in the 5-orbital case we find Uc

half filled

�2 and Uc
half filled+1�8. Thus, in the presence of a Hund

coupling J=U /6, the critical interaction strength for the Mott
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FIG. 3. �Color online� Efficiency as a function of chemical po-
tential for the 5-orbital model �U=6,J /U=1 /6,�=50�. The chemi-
cal potentials have been chosen such that the ground state of Hloc

has 5, 6, 7, 8, 9, and 10 electrons, respectively. The corresponding
degeneracy Ntr is plotted next to the Krylov data.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15 20 25 30 35

w
ei

gh
t

sector

µ-µhalf=4.98

µ-µhalf=5

µ-µhalf=5.02

FIG. 4. �Color online� Weight of the different �n↑ ,n↓� quantum-
number sectors for �−�half=4.98 �Ntr=6�, �−�half=5 �Ntr=31�,
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insulating phase decreases with increasing number of orbit-
als, in contrast to the situation for J=0.20,21

The very large interaction strengths required to study
Mott physics away from half filling are not a problem. An
attractive feature of the hybridization expansion method is
the fact that the relevant perturbation orders decrease with
increasing interaction strength.8 At U=16 and �=50, the n
=6 Mott insulating solution for J /U=1 /6 has average per-
turbation order �1.8 per orbital and spin, i.e., 18 in total.

B. Crystal field splitting and orbital selective Mott
transition

We now consider the effect of shifting two orbitals down
by �1=�2=0.5. The resulting phase diagram is plotted with
crosses and red lines. The n=5 and 6 Mott lobes are little

affected by the crystal-field splitting. The value of Uc is al-
most unchanged for n=5 and decreases by about 2 for n=6.
The width of the n=6 lobe is increased by about � and
shrinks by a similar amount for n=5. Compared to the 2
+1 splitting considered in Ref. 12 the stability of the n=6
lobe is not dramatically enhanced because the insulating
phase does not consist of half filled and band-insulating so-
lutions: the two degenerate bands �a=1 and 2� accommodate
three electrons. Larger effects on the stability of the n=6
lobe are expected for 4+1 or 3+1+1 splittings.

A qualitative difference to the orbitally symmetric case is
that the n=5 and 6 lobes are now embedded in an orbital
selective Mott phase characterized by insulating, half-filled
Green’s functions in the three degenerate bands �a=3, 4, and
5� and metallic Green’s functions in the two lower-lying
bands �a=1,2�. For n=6 electrons, the transition from the
metallic into the orbital selective Mott phase takes place near
U�12 �J /U=1 /4� and U�4.2 �J /U=1 /6�, respectively.
The metal-insulator transition in the three degenerate bands
thus occurs at an interaction strength which is substantially
smaller than the Uc required to induce the Mott transition in
the model without crystal-field splitting. This finding is con-
sistent with the enhanced stability of the half-filled Mott lobe
in the 3-orbital model.12

C. Total spin

The Krylov implementation retains the attractive features
of the hybridization expansion, such as the ability to measure
the relevance of different states in the Hilbert space of Hloc
�Fig. 4�. As a practical application we plot in Fig. 6 the
expectation value of the total spin squared, S2, as a function
of Hund coupling J /U in the weakly correlated metallic
phase �U=2,�=50� with six electrons. Results for degener-
ate bands and for a 2+3 crystal-field splitting �=0.5 are
shown. The atomic ground states for �=0 �0.5� correspond
to S2=0, 2, and 6 �0, 2� for J /U=0, S2=6 �2� for J /U
=0.05, and S2=6 �6� for J /U�0.1. The atomic picture is
however not a good reference in the parameter regime con-
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FIG. 5. �Color online� Phase diagram of the 5-orbital model in
the space of chemical potential and interaction strength for J /U
=1 /4 �top panel� and J /U=1 /6 �bottom panel�. The blue lines with
stars show the n=5 and n=6 Mott lobes for the model without
crystal-field splitting. The red line with crosses shows the effect of
a 2+3 crystal-field splitting of magnitude �=0.5 �two orbitals
shifted down� on the Mott lobes. Both Mott lobes are now con-
tained in an orbital selective Mott phase �boundary marked with
black circles� in which the three degenerate bands are insulating and
half filled while the two degenerate bands are metallic. Error bars
are on the order of the symbol size.
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show the result for degenerate orbitals, diamonds for a crystal-field
splitting �=0.5 which shifts two orbitals down.

ANDREAS M. LÄUCHLI AND PHILIPP WERNER PHYSICAL REVIEW B 80, 235117 �2009�

235117-6



sidered here. We conclude from Fig. 6 that in the moderately
correlated metallic phase the lower spin states have appre-
ciable weight and the effect of the crystal-field splitting is
small. No dramatic increase in S2 is observed as J /U is in-
creased from 0 to 0.05 and the crystal-field splitting of
�=0.5 leads to no significant reduction in S2 even at J=0.

D. Implications for pnictides

The toy model considered here captures some aspects of
the iron-based high-temperature superconductors. A minimal
description of these materials seems to require all five d
bands22 and the bandwidth of 4 eV adopted here is consistent
with the band structure obtained from density-functional
theory. Crystal-field splittings appear to be small ��
�0.2–0.5� although �due to the tetrahedral coordination� not
of the simple 2+3 type considered in Fig. 5.22,23 No consen-
sus has yet emerged about the interaction parameters U and J
and the role of correlations. Some authors argue that U
should be quite large and the material close to a Mott
transition23 or to an orbitally selective Mott state.24,25 Other
theoretical studies, however, adopt small interaction param-
eters, U�2, and J=0.2–0.6.22,26

Our phase diagrams for J /U=1 /6 and J /U=1 /4 in Fig. 5
can provide some information about the role of correlations
and crystal-field splittings, and the relevance of Mott phys-
ics. In particular, we see that the solution with n=6 and U
=2 is far away from the Mott lobe in the orbitally symmetric
case, especially if the Hund coupling is large. On the other
hand, our results for the 2+3 splitting indicate that even
relatively small crystal-field splittings can have a substantial
effect on the phase diagram and lead to the opening of a gap
in some bands at U much below the Uc for the fully gapped
phase. Correlations in pnictides may thus be relevant in the
sense that the materials are not too far from an orbital selec-
tive Mott state. But for such a scenario, the Hund coupling
parameter J would have to be rather small: for J /U=1 /4,
U=2 is a factor of 6 below the critical value for the orbital
selective transition and for J /U=1 /6 it is still a factor of 2

below. A moderately correlated metallic state seems more
consistent with the phase diagram of our simple toy model.
Figure 6, on the other hand, indicates that the total spin in the
realistic parameter regime is not particularly sensitive to the
values of J and �. At U=2, the spin 2 states start to dominate
only for J�0.6. However, since details of the band structure
appear to affect the properties of iron-based superconductors
in profound ways,26 more realistic calculations within the
�local density approximation �LDA�� LDA+DMFT frame-
work would be required to settle these issues.

VI. CONCLUSIONS

We have presented an implementation of the hybridization
expansion impurity solver which makes use of sparse-matrix
exact-diagonalization techniques to evaluate the weight of
Monte Carlo configurations. This method, while still scaling
exponentially with system size, enables a much more effi-
cient simulation of large multiorbital problems than the es-
tablished matrix formulation. In the new approach, the trace
is restricted to a small number of states �typically the lowest
energy eigenstates of the Hamiltonian� but no other trunca-
tions or approximations are necessary during the time evolu-
tion of these states.27 We have demonstrated that the restric-
tion of the outer trace leads to negligible systematic errors at
low temperature. Therefore, the Krylov method provides a
controlled and efficient implementation of the hybridization
expansion approach which enables the DMFT study of
transition-metal and actinide compounds with realistic inter-
actions.
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